Cargando…
Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)
[Image: see text] Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO(2) is an earth abundant, cheaper alternative to In(2)O(3) as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In(2)O(3). On the basis of the recent d...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147269/ https://www.ncbi.nlm.nih.gov/pubmed/32296264 http://dx.doi.org/10.1021/acs.chemmater.9b04845 |
_version_ | 1783520387767730176 |
---|---|
author | Williamson, Benjamin A. D. Featherstone, Thomas J. Sathasivam, Sanjayan S. Swallow, Jack E. N. Shiel, Huw Jones, Leanne A. H. Smiles, Matthew J. Regoutz, Anna Lee, Tien-Lin Xia, Xueming Blackman, Christopher Thakur, Pardeep K. Carmalt, Claire J. Parkin, Ivan P. Veal, Tim D. Scanlon, David O. |
author_facet | Williamson, Benjamin A. D. Featherstone, Thomas J. Sathasivam, Sanjayan S. Swallow, Jack E. N. Shiel, Huw Jones, Leanne A. H. Smiles, Matthew J. Regoutz, Anna Lee, Tien-Lin Xia, Xueming Blackman, Christopher Thakur, Pardeep K. Carmalt, Claire J. Parkin, Ivan P. Veal, Tim D. Scanlon, David O. |
author_sort | Williamson, Benjamin A. D. |
collection | PubMed |
description | [Image: see text] Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO(2) is an earth abundant, cheaper alternative to In(2)O(3) as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In(2)O(3). On the basis of the recent discovery of mobility and conductivity enhancements in In(2)O(3) from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy, and semiconductor statistics modeling to understand what is the optimal dopant to maximize performance of SnO(2)-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO(2), as it is a resonant dopant which is readily incorporated into SnO(2) with the Ta 5d states sitting ∼1.4 eV above the conduction band minimum. Experimentally, the band edge electron effective mass of Ta doped SnO(2) was shown to be 0.23m(0), compared to 0.29m(0) seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities. |
format | Online Article Text |
id | pubmed-7147269 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-71472692020-04-13 Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2) Williamson, Benjamin A. D. Featherstone, Thomas J. Sathasivam, Sanjayan S. Swallow, Jack E. N. Shiel, Huw Jones, Leanne A. H. Smiles, Matthew J. Regoutz, Anna Lee, Tien-Lin Xia, Xueming Blackman, Christopher Thakur, Pardeep K. Carmalt, Claire J. Parkin, Ivan P. Veal, Tim D. Scanlon, David O. Chem Mater [Image: see text] Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO(2) is an earth abundant, cheaper alternative to In(2)O(3) as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In(2)O(3). On the basis of the recent discovery of mobility and conductivity enhancements in In(2)O(3) from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy, and semiconductor statistics modeling to understand what is the optimal dopant to maximize performance of SnO(2)-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO(2), as it is a resonant dopant which is readily incorporated into SnO(2) with the Ta 5d states sitting ∼1.4 eV above the conduction band minimum. Experimentally, the band edge electron effective mass of Ta doped SnO(2) was shown to be 0.23m(0), compared to 0.29m(0) seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities. American Chemical Society 2020-02-18 2020-03-10 /pmc/articles/PMC7147269/ /pubmed/32296264 http://dx.doi.org/10.1021/acs.chemmater.9b04845 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Williamson, Benjamin A. D. Featherstone, Thomas J. Sathasivam, Sanjayan S. Swallow, Jack E. N. Shiel, Huw Jones, Leanne A. H. Smiles, Matthew J. Regoutz, Anna Lee, Tien-Lin Xia, Xueming Blackman, Christopher Thakur, Pardeep K. Carmalt, Claire J. Parkin, Ivan P. Veal, Tim D. Scanlon, David O. Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2) |
title | Resonant Ta Doping for Enhanced Mobility in Transparent
Conducting SnO(2) |
title_full | Resonant Ta Doping for Enhanced Mobility in Transparent
Conducting SnO(2) |
title_fullStr | Resonant Ta Doping for Enhanced Mobility in Transparent
Conducting SnO(2) |
title_full_unstemmed | Resonant Ta Doping for Enhanced Mobility in Transparent
Conducting SnO(2) |
title_short | Resonant Ta Doping for Enhanced Mobility in Transparent
Conducting SnO(2) |
title_sort | resonant ta doping for enhanced mobility in transparent
conducting sno(2) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147269/ https://www.ncbi.nlm.nih.gov/pubmed/32296264 http://dx.doi.org/10.1021/acs.chemmater.9b04845 |
work_keys_str_mv | AT williamsonbenjaminad resonanttadopingforenhancedmobilityintransparentconductingsno2 AT featherstonethomasj resonanttadopingforenhancedmobilityintransparentconductingsno2 AT sathasivamsanjayans resonanttadopingforenhancedmobilityintransparentconductingsno2 AT swallowjacken resonanttadopingforenhancedmobilityintransparentconductingsno2 AT shielhuw resonanttadopingforenhancedmobilityintransparentconductingsno2 AT jonesleanneah resonanttadopingforenhancedmobilityintransparentconductingsno2 AT smilesmatthewj resonanttadopingforenhancedmobilityintransparentconductingsno2 AT regoutzanna resonanttadopingforenhancedmobilityintransparentconductingsno2 AT leetienlin resonanttadopingforenhancedmobilityintransparentconductingsno2 AT xiaxueming resonanttadopingforenhancedmobilityintransparentconductingsno2 AT blackmanchristopher resonanttadopingforenhancedmobilityintransparentconductingsno2 AT thakurpardeepk resonanttadopingforenhancedmobilityintransparentconductingsno2 AT carmaltclairej resonanttadopingforenhancedmobilityintransparentconductingsno2 AT parkinivanp resonanttadopingforenhancedmobilityintransparentconductingsno2 AT vealtimd resonanttadopingforenhancedmobilityintransparentconductingsno2 AT scanlondavido resonanttadopingforenhancedmobilityintransparentconductingsno2 |