Cargando…

Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)

[Image: see text] Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO(2) is an earth abundant, cheaper alternative to In(2)O(3) as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In(2)O(3). On the basis of the recent d...

Descripción completa

Detalles Bibliográficos
Autores principales: Williamson, Benjamin A. D., Featherstone, Thomas J., Sathasivam, Sanjayan S., Swallow, Jack E. N., Shiel, Huw, Jones, Leanne A. H., Smiles, Matthew J., Regoutz, Anna, Lee, Tien-Lin, Xia, Xueming, Blackman, Christopher, Thakur, Pardeep K., Carmalt, Claire J., Parkin, Ivan P., Veal, Tim D., Scanlon, David O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147269/
https://www.ncbi.nlm.nih.gov/pubmed/32296264
http://dx.doi.org/10.1021/acs.chemmater.9b04845
_version_ 1783520387767730176
author Williamson, Benjamin A. D.
Featherstone, Thomas J.
Sathasivam, Sanjayan S.
Swallow, Jack E. N.
Shiel, Huw
Jones, Leanne A. H.
Smiles, Matthew J.
Regoutz, Anna
Lee, Tien-Lin
Xia, Xueming
Blackman, Christopher
Thakur, Pardeep K.
Carmalt, Claire J.
Parkin, Ivan P.
Veal, Tim D.
Scanlon, David O.
author_facet Williamson, Benjamin A. D.
Featherstone, Thomas J.
Sathasivam, Sanjayan S.
Swallow, Jack E. N.
Shiel, Huw
Jones, Leanne A. H.
Smiles, Matthew J.
Regoutz, Anna
Lee, Tien-Lin
Xia, Xueming
Blackman, Christopher
Thakur, Pardeep K.
Carmalt, Claire J.
Parkin, Ivan P.
Veal, Tim D.
Scanlon, David O.
author_sort Williamson, Benjamin A. D.
collection PubMed
description [Image: see text] Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO(2) is an earth abundant, cheaper alternative to In(2)O(3) as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In(2)O(3). On the basis of the recent discovery of mobility and conductivity enhancements in In(2)O(3) from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy, and semiconductor statistics modeling to understand what is the optimal dopant to maximize performance of SnO(2)-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO(2), as it is a resonant dopant which is readily incorporated into SnO(2) with the Ta 5d states sitting ∼1.4 eV above the conduction band minimum. Experimentally, the band edge electron effective mass of Ta doped SnO(2) was shown to be 0.23m(0), compared to 0.29m(0) seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities.
format Online
Article
Text
id pubmed-7147269
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-71472692020-04-13 Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2) Williamson, Benjamin A. D. Featherstone, Thomas J. Sathasivam, Sanjayan S. Swallow, Jack E. N. Shiel, Huw Jones, Leanne A. H. Smiles, Matthew J. Regoutz, Anna Lee, Tien-Lin Xia, Xueming Blackman, Christopher Thakur, Pardeep K. Carmalt, Claire J. Parkin, Ivan P. Veal, Tim D. Scanlon, David O. Chem Mater [Image: see text] Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO(2) is an earth abundant, cheaper alternative to In(2)O(3) as a TCO. However, its performance in terms of mobilities and conductivities lags behind that of In(2)O(3). On the basis of the recent discovery of mobility and conductivity enhancements in In(2)O(3) from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy, and semiconductor statistics modeling to understand what is the optimal dopant to maximize performance of SnO(2)-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO(2), as it is a resonant dopant which is readily incorporated into SnO(2) with the Ta 5d states sitting ∼1.4 eV above the conduction band minimum. Experimentally, the band edge electron effective mass of Ta doped SnO(2) was shown to be 0.23m(0), compared to 0.29m(0) seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities. American Chemical Society 2020-02-18 2020-03-10 /pmc/articles/PMC7147269/ /pubmed/32296264 http://dx.doi.org/10.1021/acs.chemmater.9b04845 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Williamson, Benjamin A. D.
Featherstone, Thomas J.
Sathasivam, Sanjayan S.
Swallow, Jack E. N.
Shiel, Huw
Jones, Leanne A. H.
Smiles, Matthew J.
Regoutz, Anna
Lee, Tien-Lin
Xia, Xueming
Blackman, Christopher
Thakur, Pardeep K.
Carmalt, Claire J.
Parkin, Ivan P.
Veal, Tim D.
Scanlon, David O.
Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)
title Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)
title_full Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)
title_fullStr Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)
title_full_unstemmed Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)
title_short Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO(2)
title_sort resonant ta doping for enhanced mobility in transparent conducting sno(2)
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147269/
https://www.ncbi.nlm.nih.gov/pubmed/32296264
http://dx.doi.org/10.1021/acs.chemmater.9b04845
work_keys_str_mv AT williamsonbenjaminad resonanttadopingforenhancedmobilityintransparentconductingsno2
AT featherstonethomasj resonanttadopingforenhancedmobilityintransparentconductingsno2
AT sathasivamsanjayans resonanttadopingforenhancedmobilityintransparentconductingsno2
AT swallowjacken resonanttadopingforenhancedmobilityintransparentconductingsno2
AT shielhuw resonanttadopingforenhancedmobilityintransparentconductingsno2
AT jonesleanneah resonanttadopingforenhancedmobilityintransparentconductingsno2
AT smilesmatthewj resonanttadopingforenhancedmobilityintransparentconductingsno2
AT regoutzanna resonanttadopingforenhancedmobilityintransparentconductingsno2
AT leetienlin resonanttadopingforenhancedmobilityintransparentconductingsno2
AT xiaxueming resonanttadopingforenhancedmobilityintransparentconductingsno2
AT blackmanchristopher resonanttadopingforenhancedmobilityintransparentconductingsno2
AT thakurpardeepk resonanttadopingforenhancedmobilityintransparentconductingsno2
AT carmaltclairej resonanttadopingforenhancedmobilityintransparentconductingsno2
AT parkinivanp resonanttadopingforenhancedmobilityintransparentconductingsno2
AT vealtimd resonanttadopingforenhancedmobilityintransparentconductingsno2
AT scanlondavido resonanttadopingforenhancedmobilityintransparentconductingsno2