Cargando…

Diagnostic Accuracy of MALDI-TOF Mass Spectrometry for the Direct Identification of Clinical Pathogens from Urine

Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has become one of the most popular methods for the rapid and cost-effective detection of clinical pathogenic microorganisms. This study aimed to evaluate and compare the diagnostic performance of MALDI-TOF MS...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Min, Yang, Jia, Li, Ying, Zhang, Luhua, Peng, Ying, Chen, Wenbi, Liu, Jinbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147288/
https://www.ncbi.nlm.nih.gov/pubmed/32292823
http://dx.doi.org/10.1515/med-2020-0038
Descripción
Sumario:Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has become one of the most popular methods for the rapid and cost-effective detection of clinical pathogenic microorganisms. This study aimed to evaluate and compare the diagnostic performance of MALDI-TOF MS with that of conventional approaches for the direct identification of pathogens from urine samples. A systematic review was conducted based on a literature search of relevant databases. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and area under the summary receiver operating characteristic (SROC) curve of the combined studies were estimated. Nine studies with a total of 3920 subjects were considered eligible and included in the meta-analysis. The pooled sensitivity was 0.85 (95% CI 0.79-0.90), and the pooled specificity was 0.93 (95% CI 0.82-0.97). The PLR and NLR were 11.51 (95% CI 4.53-29.26) and 0.16 (95% CI 0.11-0.24), respectively. The area under the SROC curve was 0.93 (95% CI 0.91-0.95). Sensitivity analysis showed that the results of this meta-analysis were stable. MALDI-TOF MS could directly identify microorganisms from urine samples with high sensitivity and specificity.