Cargando…
Real-Time Prediction of Rheological Properties of Invert Emulsion Mud Using Adaptive Neuro-Fuzzy Inference System
Tracking the rheological properties of the drilling fluid is a key factor for the success of the drilling operation. The main objective of this paper is to relate the most frequent mud measurements (every 15 to 20 min) as mud weight (MWT) and Marsh funnel viscosity (MFV) to the less frequent mud rhe...
Autores principales: | Alsabaa, Ahmed, Gamal, Hany, Elkatatny, Salaheldin, Abdulraheem, Abdulazeez |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147378/ https://www.ncbi.nlm.nih.gov/pubmed/32192144 http://dx.doi.org/10.3390/s20061669 |
Ejemplares similares
-
Machine Learning Model for Monitoring Rheological
Properties of Synthetic Oil-Based Mud
por: Alsabaa, Ahmed, et al.
Publicado: (2022) -
Effect of the Filtrate Fluid of Water-Based Mud on
Sandstone Rock Strength and Elastic Moduli
por: Gamal, Hany, et al.
Publicado: (2020) -
Improved Tracking of the Rheological Properties of
Max-Bridge Oil-Based Mud Using Artificial Neural Networks
por: Alsabaa, Ahmed, et al.
Publicado: (2021) -
Intelligent Prediction for Rock Porosity While Drilling Complex Lithology in Real Time
por: Gamal, Hany, et al.
Publicado: (2021) -
Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools
por: Siddig, Osama, et al.
Publicado: (2021)