Cargando…

Predicting Deep Hypnotic State From Sleep Brain Rhythms Using Deep Learning: A Data-Repurposing Approach

BACKGROUND: Brain monitors tracking quantitative brain activities from electroencephalogram (EEG) to predict hypnotic levels have been proposed as a labor-saving alternative to behavioral assessments. Expensive clinical trials are required to validate any newly developed processed EEG monitor for ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Belur Nagaraj, Sunil, Ramaswamy, Sowmya M., Weerink, Maud A. S., Struys, Michel M. R. F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147424/
https://www.ncbi.nlm.nih.gov/pubmed/32287128
http://dx.doi.org/10.1213/ANE.0000000000004651
Descripción
Sumario:BACKGROUND: Brain monitors tracking quantitative brain activities from electroencephalogram (EEG) to predict hypnotic levels have been proposed as a labor-saving alternative to behavioral assessments. Expensive clinical trials are required to validate any newly developed processed EEG monitor for every drug and combinations of drugs due to drug-specific EEG patterns. There is a need for an alternative, efficient, and economical method. METHODS: Using deep learning algorithms, we developed a novel data-repurposing framework to predict hypnotic levels from sleep brain rhythms. We used an online large sleep data set (5723 clinical EEGs) for training the deep learning algorithm and a clinical trial hypnotic data set (30 EEGs) for testing during dexmedetomidine infusion. Model performance was evaluated using accuracy and the area under the receiver operator characteristic curve (AUC). RESULTS: The deep learning model (a combination of a convolutional neural network and long short-term memory units) trained on sleep EEG predicted deep hypnotic level with an accuracy (95% confidence interval [CI]) = 81 (79.2–88.3)%, AUC (95% CI) = 0.89 (0.82–0.94) using dexmedetomidine as a prototype drug. We also demonstrate that EEG patterns during dexmedetomidine-induced deep hypnotic level are homologous to nonrapid eye movement stage 3 EEG sleep. CONCLUSIONS: We propose a novel method to develop hypnotic level monitors using large sleep EEG data, deep learning, and a data-repurposing approach, and for optimizing such a system for monitoring any given individual. We provide a novel data-repurposing framework to predict hypnosis levels using sleep EEG, eliminating the need for new clinical trials to develop hypnosis level monitors.