Cargando…
Predicting Deep Hypnotic State From Sleep Brain Rhythms Using Deep Learning: A Data-Repurposing Approach
BACKGROUND: Brain monitors tracking quantitative brain activities from electroencephalogram (EEG) to predict hypnotic levels have been proposed as a labor-saving alternative to behavioral assessments. Expensive clinical trials are required to validate any newly developed processed EEG monitor for ev...
Autores principales: | Belur Nagaraj, Sunil, Ramaswamy, Sowmya M., Weerink, Maud A. S., Struys, Michel M. R. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147424/ https://www.ncbi.nlm.nih.gov/pubmed/32287128 http://dx.doi.org/10.1213/ANE.0000000000004651 |
Ejemplares similares
-
Dexmedetomidine-induced deep sedation mimics non-rapid eye movement stage 3 sleep: large-scale validation using machine learning
por: Ramaswamy, Sowmya M, et al.
Publicado: (2020) -
Frontal electroencephalogram based drug, sex, and age independent sedation level prediction using non-linear machine learning algorithms
por: Ramaswamy, S. M., et al.
Publicado: (2020) -
Actigraphy‐estimated sleep and 24‐hour activity rhythms and the risk of dementia
por: Lysen, Thom S., et al.
Publicado: (2020) -
Predicting sex from brain rhythms with deep learning
por: van Putten, Michel J. A. M., et al.
Publicado: (2018) -
Beyond deep learning
por: Waldrop, M. Mitchell
Publicado: (2022)