Cargando…
Dipeptide Frequency of Word Frequency and Graph Convolutional Networks for DTA Prediction
Deep learning is an effective method to capture drug-target binding affinity, but low accuracy is still an obstacle to be overcome. Thus, we propose a novel predictor for drug-target binding affinity based on dipeptide frequency of word frequency encoding and a hybrid graph convolutional network. Wo...
Autores principales: | Wang, Xianfang, Liu, Yifeng, Lu, Fan, Li, Hongfei, Gao, Peng, Wei, Dongqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147459/ https://www.ncbi.nlm.nih.gov/pubmed/32318557 http://dx.doi.org/10.3389/fbioe.2020.00267 |
Ejemplares similares
-
Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction
por: Zhu, Rongxiang, et al.
Publicado: (2020) -
Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network
por: Zhao, Yun, et al.
Publicado: (2022) -
Deep Feature Mining via the Attention-Based Bidirectional Long Short Term Memory Graph Convolutional Neural Network for Human Motor Imagery Recognition
por: Hou, Yimin, et al.
Publicado: (2022) -
Prediction of DNA-Binding Protein–Drug-Binding Sites Using Residue Interaction Networks and Sequence Feature
por: Wang, Wei, et al.
Publicado: (2022) -
Influence of the parameters of the convolutional neural network model in predicting the effective compressive modulus of porous structure
por: Lu, Yongtao, et al.
Publicado: (2022)