Cargando…
A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition
In this paper, a novel hybrid damage detection system is proposed, which utilizes piezoelectric actuators for guided wave excitation and a new fibre optic (FO) sensor based on Fabry-Perot (FP) and Fiber Bragg Grating (FBG). By replacing the FBG sensors with FBG-based FP sensors in the hybrid damage...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147481/ https://www.ncbi.nlm.nih.gov/pubmed/32204566 http://dx.doi.org/10.3390/s20061728 |
Sumario: | In this paper, a novel hybrid damage detection system is proposed, which utilizes piezoelectric actuators for guided wave excitation and a new fibre optic (FO) sensor based on Fabry-Perot (FP) and Fiber Bragg Grating (FBG). By replacing the FBG sensors with FBG-based FP sensors in the hybrid damage detection system, a higher strain resolution is achieved, which results in higher damage sensitivity and higher reliability in diagnosis. To develop the novel sensor, optimum parameters such as reflectivity, a wavelength spectrum, and a sensor length were chosen carefully through an analytical model of the sensor, which has been validated with experiments. The sensitivity of the new FBG-based FP sensors was compared to FBG sensors to emphasize the superiority of the new sensors in measuring micro-strains. Lastly, the new FBG-based FP sensor was utilized for recording guided waves in a hybrid setup and compared to the conventional FBG hybrid sensor network to demonstrate their improved performance for a structural health monitoring (SHM) application. |
---|