Cargando…

Metabolic profiles among COPD and controls in the CanCOLD population-based cohort

A high prevalence of intermediate cardiometabolic risk factors and obesity in chronic obstructive pulmonary disease (COPD) has suggested the existence of pathophysiological links between hypertriglyceridemia, insulin resistance, visceral adiposity, and hypoxia or impaired pulmonary function. However...

Descripción completa

Detalles Bibliográficos
Autores principales: Viglino, Damien, Martin, Mickaël, Piché, Marie-Eve, Brouillard, Cynthia, Després, Jean-Pierre, Alméras, Natalie, Tan, Wan C., Coats, Valérie, Bourbeau, Jean, Pépin, Jean-Louis, Maltais, François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147771/
https://www.ncbi.nlm.nih.gov/pubmed/32275684
http://dx.doi.org/10.1371/journal.pone.0231072
Descripción
Sumario:A high prevalence of intermediate cardiometabolic risk factors and obesity in chronic obstructive pulmonary disease (COPD) has suggested the existence of pathophysiological links between hypertriglyceridemia, insulin resistance, visceral adiposity, and hypoxia or impaired pulmonary function. However, whether COPD contributes independently to the development of these cardiometabolic risk factors remains unclear. Our objective was to compare ectopic fat and metabolic profiles among representative individuals with COPD and control subjects and to evaluate whether the presence of COPD alters the metabolic risk profile. Study participants were randomly selected from the general population and prospectively classified as non-COPD controls and COPD, according to the Global Initiative for Chronic Obstructive Lung Disease classification. The metabolic phenotype, which consisted of visceral adipose tissue area, metabolic markers including homeostasis model assessment of insulin resistance (HOMA-IR), and blood lipid profile, was obtained in 144 subjects with COPD and 119 non-COPD controls. The metabolic phenotype was similar in COPD and controls. The odds ratios for having pathologic values for HOMA-IR, lipids and visceral adipose tissue area were similar in individuals with COPD and control subjects in multivariate analyses that took into account age, sex, body mass index, tobacco status and current medications. In a population-based cohort, no difference was found in the metabolic phenotype, including visceral adipose tissue accumulation, between COPD and controls. Discrepancies between the present and previous studies as to whether or not COPD is a risk factor for metabolic abnormalities could be related to differences in COPD phenotype or disease severity of the study populations.