Cargando…
Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation
Temporal psycholinguistics can play a crucial role in studying expressions of suicidal intent on social media. Current methods are limited in their approach in leveraging contextual psychological cues from online user communities. This work embarks in a novel direction to explore historical activiti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148016/ http://dx.doi.org/10.1007/978-3-030-45442-5_33 |
_version_ | 1783520512170786816 |
---|---|
author | Mathur, Puneet Sawhney, Ramit Chopra, Shivang Leekha, Maitree Ratn Shah, Rajiv |
author_facet | Mathur, Puneet Sawhney, Ramit Chopra, Shivang Leekha, Maitree Ratn Shah, Rajiv |
author_sort | Mathur, Puneet |
collection | PubMed |
description | Temporal psycholinguistics can play a crucial role in studying expressions of suicidal intent on social media. Current methods are limited in their approach in leveraging contextual psychological cues from online user communities. This work embarks in a novel direction to explore historical activities of users and homophily networks formed between Twitter users for extracting suicidality trends. Empirical evidence proves the advantages of incorporating historical user profiling and temporal graph convolutional modeling for automated detection of suicidal connotations on Twitter. |
format | Online Article Text |
id | pubmed-7148016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71480162020-04-13 Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation Mathur, Puneet Sawhney, Ramit Chopra, Shivang Leekha, Maitree Ratn Shah, Rajiv Advances in Information Retrieval Article Temporal psycholinguistics can play a crucial role in studying expressions of suicidal intent on social media. Current methods are limited in their approach in leveraging contextual psychological cues from online user communities. This work embarks in a novel direction to explore historical activities of users and homophily networks formed between Twitter users for extracting suicidality trends. Empirical evidence proves the advantages of incorporating historical user profiling and temporal graph convolutional modeling for automated detection of suicidal connotations on Twitter. 2020-03-24 /pmc/articles/PMC7148016/ http://dx.doi.org/10.1007/978-3-030-45442-5_33 Text en © Springer Nature Switzerland AG 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Mathur, Puneet Sawhney, Ramit Chopra, Shivang Leekha, Maitree Ratn Shah, Rajiv Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation |
title | Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation |
title_full | Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation |
title_fullStr | Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation |
title_full_unstemmed | Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation |
title_short | Utilizing Temporal Psycholinguistic Cues for Suicidal Intent Estimation |
title_sort | utilizing temporal psycholinguistic cues for suicidal intent estimation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148016/ http://dx.doi.org/10.1007/978-3-030-45442-5_33 |
work_keys_str_mv | AT mathurpuneet utilizingtemporalpsycholinguisticcuesforsuicidalintentestimation AT sawhneyramit utilizingtemporalpsycholinguisticcuesforsuicidalintentestimation AT choprashivang utilizingtemporalpsycholinguisticcuesforsuicidalintentestimation AT leekhamaitree utilizingtemporalpsycholinguisticcuesforsuicidalintentestimation AT ratnshahrajiv utilizingtemporalpsycholinguisticcuesforsuicidalintentestimation |