Cargando…
Novel and Diverse Recommendations by Leveraging Linear Models with User and Item Embeddings
Nowadays, item recommendation is an increasing concern for many companies. Users tend to be more reactive than proactive for solving information needs. Recommendation accuracy became the most studied aspect of the quality of the suggestions. However, novel and diverse suggestions also contribute to...
Autores principales: | Landin, Alfonso, Parapar, Javier, Barreiro, Álvaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148017/ http://dx.doi.org/10.1007/978-3-030-45442-5_27 |
Ejemplares similares
-
Weighted Similarity and Core-User-Core-Item Based Recommendations
por: Zhang, Zhuangzhuang, et al.
Publicado: (2022) -
Attentional factorization machine with review-based user–item interaction for recommendation
por: Li, Zheng, et al.
Publicado: (2023) -
Leveraging heterogeneous network embedding for metabolic pathway prediction
por: M A Basher, Abdur Rahman, et al.
Publicado: (2020) -
Attenuated and normalized item-item product network for sequential recommendation
por: Di, Weiqiang, et al.
Publicado: (2022) -
Editorial: User Modeling and Recommendations
por: Helic, Denis, et al.
Publicado: (2022)