Cargando…

MedLinker: Medical Entity Linking with Neural Representations and Dictionary Matching

Progress in the field of Natural Language Processing (NLP) has been closely followed by applications in the medical domain. Recent advancements in Neural Language Models (NLMs) have transformed the field and are currently motivating numerous works exploring their application in different domains. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Loureiro, Daniel, Jorge, Alípio Mário
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148021/
http://dx.doi.org/10.1007/978-3-030-45442-5_29
Descripción
Sumario:Progress in the field of Natural Language Processing (NLP) has been closely followed by applications in the medical domain. Recent advancements in Neural Language Models (NLMs) have transformed the field and are currently motivating numerous works exploring their application in different domains. In this paper, we explore how NLMs can be used for Medical Entity Linking with the recently introduced MedMentions dataset, which presents two major challenges: (1) a large target ontology of over 2M concepts, and (2) low overlap between concepts in train, validation and test sets. We introduce a solution, MedLinker, that addresses these issues by leveraging specialized NLMs with Approximate Dictionary Matching, and show that it performs competitively on semantic type linking, while improving the state-of-the-art on the more fine-grained task of concept linking (+4 F1 on MedMentions main task).