Cargando…
Incremental Approach for Automatic Generation of Domain-Specific Sentiment Lexicon
Sentiment lexicon plays a vital role in lexicon-based sentiment analysis. The lexicon-based method is often preferred because it leads to more explainable answers in comparison with many machine learning-based methods. But, semantic orientation of a word depends on its domain. Hence, a general-purpo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148022/ http://dx.doi.org/10.1007/978-3-030-45442-5_81 |
Sumario: | Sentiment lexicon plays a vital role in lexicon-based sentiment analysis. The lexicon-based method is often preferred because it leads to more explainable answers in comparison with many machine learning-based methods. But, semantic orientation of a word depends on its domain. Hence, a general-purpose sentiment lexicon may gives sub-optimal performance compare with a domain-specific lexicon. However, it is challenging to manually generate a domain-specific sentiment lexicon for each domain. Still, it is impractical to generate complete sentiment lexicon for a domain from a single corpus. To this end, we propose an approach to automatically generate a domain-specific sentiment lexicon using a vector model enriched by weights. Importantly, we propose an incremental approach for updating an existing lexicon to either the same domain or different domain (domain-adaptation). Finally, we discuss how to incorporate sentiment lexicons information in neural models (word embedding) for better performance. |
---|