Cargando…
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
In this work, we focus on the problem of entity alignment in Knowledge Graphs (KG) and we report on our experiences when applying a Graph Convolutional Network (GCN) based model for this task. Variants of GCN are used in multiple state-of-the-art approaches and therefore it is important to understan...
Autores principales: | Berrendorf, Max, Faerman, Evgeniy, Melnychuk, Valentyn, Tresp, Volker, Seidl, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148025/ http://dx.doi.org/10.1007/978-3-030-45442-5_1 |
Ejemplares similares
-
Multipath Cross Graph Convolution for Knowledge Representation Learning
por: Tian, Luogeng, et al.
Publicado: (2021) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Enhancing Cross-Lingual Entity Alignment in Knowledge Graphs through Structure Similarity Rearrangement
por: Liu, Guiyang, et al.
Publicado: (2023) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020) -
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020)