Cargando…
BiOnt: Deep Learning Using Multiple Biomedical Ontologies for Relation Extraction
Successful biomedical relation extraction can provide evidence to researchers and clinicians about possible unknown associations between biomedical entities, advancing the current knowledge we have about those entities and their inherent mechanisms. Most biomedical relation extraction systems do not...
Autores principales: | Sousa, Diana, Couto, Francisco M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148040/ http://dx.doi.org/10.1007/978-3-030-45442-5_46 |
Ejemplares similares
-
Porphyromonas gingivalis: keeping the pathos out of the biont
por: Cugini, Carla, et al.
Publicado: (2013) -
TrhOnt: building an ontology to assist rehabilitation processes
por: Berges, Idoia, et al.
Publicado: (2016) -
Predicting the Extension of Biomedical Ontologies
por: Pesquita, Catia, et al.
Publicado: (2012) -
BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies
por: Lamurias, Andre, et al.
Publicado: (2019) -
K-RET: knowledgeable biomedical relation extraction system
por: Sousa, Diana F, et al.
Publicado: (2023)