Cargando…

Irony Detection in a Multilingual Context

This paper proposes the first multilingual (French, English and Arabic) and multicultural (Indo-European languages vs. less culturally close languages) irony detection system. We employ both feature-based models and neural architectures using monolingual word representation. We compare the performan...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghanem, Bilal, Karoui, Jihen, Benamara, Farah, Rosso, Paolo, Moriceau, Véronique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148041/
http://dx.doi.org/10.1007/978-3-030-45442-5_18
Descripción
Sumario:This paper proposes the first multilingual (French, English and Arabic) and multicultural (Indo-European languages vs. less culturally close languages) irony detection system. We employ both feature-based models and neural architectures using monolingual word representation. We compare the performance of these systems with state-of-the-art systems to identify their capabilities. We show that these monolingual models trained separately on different languages using multilingual word representation or text-based features can open the door to irony detection in languages that lack of annotated data for irony.