Cargando…

Irony Detection in a Multilingual Context

This paper proposes the first multilingual (French, English and Arabic) and multicultural (Indo-European languages vs. less culturally close languages) irony detection system. We employ both feature-based models and neural architectures using monolingual word representation. We compare the performan...

Descripción completa

Detalles Bibliográficos
Autores principales: Ghanem, Bilal, Karoui, Jihen, Benamara, Farah, Rosso, Paolo, Moriceau, Véronique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148041/
http://dx.doi.org/10.1007/978-3-030-45442-5_18
_version_ 1783520518074269696
author Ghanem, Bilal
Karoui, Jihen
Benamara, Farah
Rosso, Paolo
Moriceau, Véronique
author_facet Ghanem, Bilal
Karoui, Jihen
Benamara, Farah
Rosso, Paolo
Moriceau, Véronique
author_sort Ghanem, Bilal
collection PubMed
description This paper proposes the first multilingual (French, English and Arabic) and multicultural (Indo-European languages vs. less culturally close languages) irony detection system. We employ both feature-based models and neural architectures using monolingual word representation. We compare the performance of these systems with state-of-the-art systems to identify their capabilities. We show that these monolingual models trained separately on different languages using multilingual word representation or text-based features can open the door to irony detection in languages that lack of annotated data for irony.
format Online
Article
Text
id pubmed-7148041
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-71480412020-04-13 Irony Detection in a Multilingual Context Ghanem, Bilal Karoui, Jihen Benamara, Farah Rosso, Paolo Moriceau, Véronique Advances in Information Retrieval Article This paper proposes the first multilingual (French, English and Arabic) and multicultural (Indo-European languages vs. less culturally close languages) irony detection system. We employ both feature-based models and neural architectures using monolingual word representation. We compare the performance of these systems with state-of-the-art systems to identify their capabilities. We show that these monolingual models trained separately on different languages using multilingual word representation or text-based features can open the door to irony detection in languages that lack of annotated data for irony. 2020-03-24 /pmc/articles/PMC7148041/ http://dx.doi.org/10.1007/978-3-030-45442-5_18 Text en © Springer Nature Switzerland AG 2020 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Ghanem, Bilal
Karoui, Jihen
Benamara, Farah
Rosso, Paolo
Moriceau, Véronique
Irony Detection in a Multilingual Context
title Irony Detection in a Multilingual Context
title_full Irony Detection in a Multilingual Context
title_fullStr Irony Detection in a Multilingual Context
title_full_unstemmed Irony Detection in a Multilingual Context
title_short Irony Detection in a Multilingual Context
title_sort irony detection in a multilingual context
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148041/
http://dx.doi.org/10.1007/978-3-030-45442-5_18
work_keys_str_mv AT ghanembilal ironydetectioninamultilingualcontext
AT karouijihen ironydetectioninamultilingualcontext
AT benamarafarah ironydetectioninamultilingualcontext
AT rossopaolo ironydetectioninamultilingualcontext
AT moriceauveronique ironydetectioninamultilingualcontext