Cargando…
Supervised Learning Methods for Diversification of Image Search Results
We adopt a supervised learning framework, namely R-LTR [17], to diversify image search results, and extend it in various ways. Our experiments show that the adopted and proposed variants are superior to two well-known baselines, with relative gains up to 11.4%.
Autores principales: | Goynuk, Burak, Altingovde, Ismail Sengor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148049/ http://dx.doi.org/10.1007/978-3-030-45442-5_20 |
Ejemplares similares
-
Predicting the Size of Candidate Document Set for Implicit Web Search Result Diversification
por: Ulu, Yasar Baris, et al.
Publicado: (2020) -
Advances in information retrieval: 39th European conference on IR research, ECIR 2017, Aberdeen, UK, April 8-13, 2017, proceedings
por: Jose, Joemon M, et al.
Publicado: (2017) -
Div-BLAST: Diversification of Sequence Search Results
por: Eser, Elif, et al.
Publicado: (2014) -
Fast and scalable search of whole-slide images via self-supervised deep learning
por: Chen, Chengkuan, et al.
Publicado: (2022) -
Integrating Semi-supervised and Supervised Learning Methods for Label Fusion in Multi-Atlas Based Image Segmentation
por: Zheng, Qiang, et al.
Publicado: (2018)