Cargando…
Neural-IR-Explorer: A Content-Focused Tool to Explore Neural Re-ranking Results
In this paper we look beyond metrics-based evaluation of Information Retrieval systems, to explore the reasons behind ranking results. We present the content-focused Neural-IR-Explorer, which empowers users to browse through retrieval results and inspect the inner workings and fine-grained results o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148052/ http://dx.doi.org/10.1007/978-3-030-45442-5_58 |
Sumario: | In this paper we look beyond metrics-based evaluation of Information Retrieval systems, to explore the reasons behind ranking results. We present the content-focused Neural-IR-Explorer, which empowers users to browse through retrieval results and inspect the inner workings and fine-grained results of neural re-ranking models. The explorer includes a categorized overview of the available queries, as well as an individual query result view with various options to highlight semantic connections between query-document pairs. The Neural-IR-Explorer is available at: https://neural-ir-explorer.ec.tuwien.ac.at/. |
---|