Cargando…
Dynamic Heterogeneous Graph Embedding Using Hierarchical Attentions
Graph embedding has attracted many research interests. Existing works mainly focus on static homogeneous/heterogeneous networks or dynamic homogeneous networks. However, dynamic heterogeneous networks are more ubiquitous in reality, e.g. social network, e-commerce network, citation network, etc. The...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148053/ http://dx.doi.org/10.1007/978-3-030-45442-5_53 |
Sumario: | Graph embedding has attracted many research interests. Existing works mainly focus on static homogeneous/heterogeneous networks or dynamic homogeneous networks. However, dynamic heterogeneous networks are more ubiquitous in reality, e.g. social network, e-commerce network, citation network, etc. There is still a lack of research on dynamic heterogeneous graph embedding. In this paper, we propose a novel dynamic heterogeneous graph embedding method using hierarchical attentions (DyHAN) that learns node embeddings leveraging both structural heterogeneity and temporal evolution. We evaluate our method on three real-world datasets. The results show that DyHAN outperforms various state-of-the-art baselines in terms of link prediction task. |
---|