Cargando…
Semi-supervised Extractive Question Summarization Using Question-Answer Pairs
Neural extractive summarization methods often require much labeled training data, for which headlines or lead summaries of news articles can sometimes be used. Such directly useful summaries are not always available, however, especially for user-generated content, such as questions posted on communi...
Autores principales: | Machida, Kazuya, Ishigaki, Tatsuya, Kobayashi, Hayato, Takamura, Hiroya, Okumura, Manabu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148067/ http://dx.doi.org/10.1007/978-3-030-45442-5_32 |
Ejemplares similares
-
Distant Supervision for Extractive Question Summarization
por: Ishigaki, Tatsuya, et al.
Publicado: (2020) -
Question-driven summarization of answers to consumer health questions
por: Savery, Max, et al.
Publicado: (2020) -
Neural Query-Biased Abstractive Summarization Using Copying Mechanism
por: Ishigaki, Tatsuya, et al.
Publicado: (2020) -
Factoid Question Answering with Distant Supervision
por: Zhang, Hongzhi, et al.
Publicado: (2018) -
Questions & Answers
por: CERN. Geneva
Publicado: (2019)