Cargando…
International Workshop on Algorithmic Bias in Search and Recommendation (Bias 2020)
Both search and recommendation algorithms provide results based on their relevance for the current user. In order to do so, such a relevance is usually computed by models trained on historical data, which is biased in most cases. Hence, the results produced by these algorithms naturally propagate, a...
Autores principales: | Boratto, Ludovico, Marras, Mirko, Faralli, Stefano, Stilo, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148070/ http://dx.doi.org/10.1007/978-3-030-45442-5_84 |
Ejemplares similares
-
Bias in artificial intelligence algorithms and recommendations for mitigation
por: Nazer, Lama H., et al.
Publicado: (2023) -
Biased data lead to biased algorithms
por: Richardson, Anamaria
Publicado: (2022) -
Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence
por: Walsh, Colin G, et al.
Publicado: (2020) -
Recognizing and Reckoning With Unconscious Bias: A Workshop for Health Professions Faculty Search Committees
por: Cahn, Peter S.
Publicado: (2017) -
Bias at the Bedside: a Roleplay-Based Workshop for Responding to Biased Comments in the Teaching Hospital
por: Faller, Veronica, et al.
Publicado: (2023)