Cargando…
Neural Query-Biased Abstractive Summarization Using Copying Mechanism
This paper deals with the query-biased summarization task. Conventional non-neural network-based approaches have achieved better performance by primarily including the words overlapping between the source and the query in the summary. However, recurrent neural network (RNN)-based approaches do not e...
Autores principales: | Ishigaki, Tatsuya, Huang, Hen-Hsen, Takamura, Hiroya, Chen, Hsin-Hsi, Okumura, Manabu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148071/ http://dx.doi.org/10.1007/978-3-030-45442-5_22 |
Ejemplares similares
-
Distant Supervision for Extractive Question Summarization
por: Ishigaki, Tatsuya, et al.
Publicado: (2020) -
Semi-supervised Extractive Question Summarization Using Question-Answer Pairs
por: Machida, Kazuya, et al.
Publicado: (2020) -
From extractive to abstractive summarization
por: Mehta, Parth, et al.
Publicado: (2019) -
Abstractive Arabic Text Summarization Based on Deep Learning
por: Wazery, Y. M., et al.
Publicado: (2022) -
A Comprehensive Survey of Abstractive Text Summarization Based on Deep Learning
por: Zhang, Mengli, et al.
Publicado: (2022)