Cargando…
Contextualized Embeddings in Named-Entity Recognition: An Empirical Study on Generalization
Contextualized embeddings use unsupervised language model pretraining to compute word representations depending on their context. This is intuitively useful for generalization, especially in Named-Entity Recognition where it is crucial to detect mentions never seen during training. However, standard...
Autores principales: | Taillé, Bruno, Guigue, Vincent, Gallinari, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148073/ http://dx.doi.org/10.1007/978-3-030-45442-5_48 |
Ejemplares similares
-
Combining Contextualized Embeddings and Prior Knowledge for Clinical Named Entity Recognition: Evaluation Study
por: Jiang, Min, et al.
Publicado: (2019) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021) -
Using Empirically Constructed Lexical Resources for Named Entity Recognition
por: Jonnalagadda, Siddhartha, et al.
Publicado: (2013) -
Biomedical named entity recognition using deep neural networks with contextual information
por: Cho, Hyejin, et al.
Publicado: (2019) -
Biomedical named entity recognition based on fusion multi-features embedding
por: Li, Meijing, et al.
Publicado: (2023)