Cargando…
On Biomedical Named Entity Recognition: Experiments in Interlingual Transfer for Clinical and Social Media Texts
Although deep neural networks yield state-of-the-art performance in biomedical named entity recognition (bioNER), much research shares one limitation: models are usually trained and evaluated on English texts from a single domain. In this work, we present a fine-grained evaluation intended to unders...
Autores principales: | Miftahutdinov, Zulfat, Alimova, Ilseyar, Tutubalina, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148079/ http://dx.doi.org/10.1007/978-3-030-45442-5_35 |
Ejemplares similares
-
DeepADEMiner: a deep learning pharmacovigilance pipeline for extraction and normalization of adverse drug event mentions on Twitter
por: Magge, Arjun, et al.
Publicado: (2021) -
Medical concept normalization in clinical trials with drug and disease representation learning
por: Miftahutdinov, Zulfat, et al.
Publicado: (2021) -
Transfer learning for biomedical named entity recognition with neural networks
por: Giorgi, John M, et al.
Publicado: (2018) -
Hierarchical shared transfer learning for biomedical named entity recognition
por: Chai, Zhaoying, et al.
Publicado: (2022) -
NEREL-BIO: a dataset of biomedical abstracts annotated with nested named entities
por: Loukachevitch, Natalia, et al.
Publicado: (2023)