Cargando…
Selene: a PyTorch-based deep learning library for sequence data
To enable the application of deep learning in biology, we present Selene (https://selene.flatironinstitute.org/), a PyTorch-based deep learning library for fast and easy development, training, and application of deep learning model architectures for any biological sequences. We demonstrate how Selen...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148117/ https://www.ncbi.nlm.nih.gov/pubmed/30923381 http://dx.doi.org/10.1038/s41592-019-0360-8 |
_version_ | 1783520535043375104 |
---|---|
author | Chen, Kathleen M. Cofer, Evan M. Zhou, Jian Troyanskaya, Olga G. |
author_facet | Chen, Kathleen M. Cofer, Evan M. Zhou, Jian Troyanskaya, Olga G. |
author_sort | Chen, Kathleen M. |
collection | PubMed |
description | To enable the application of deep learning in biology, we present Selene (https://selene.flatironinstitute.org/), a PyTorch-based deep learning library for fast and easy development, training, and application of deep learning model architectures for any biological sequences. We demonstrate how Selene allows researchers to easily train a published architecture on new data, develop and evaluate a new architecture, and use a trained model to answer biological questions of interest. |
format | Online Article Text |
id | pubmed-7148117 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71481172020-04-10 Selene: a PyTorch-based deep learning library for sequence data Chen, Kathleen M. Cofer, Evan M. Zhou, Jian Troyanskaya, Olga G. Nat Methods Article To enable the application of deep learning in biology, we present Selene (https://selene.flatironinstitute.org/), a PyTorch-based deep learning library for fast and easy development, training, and application of deep learning model architectures for any biological sequences. We demonstrate how Selene allows researchers to easily train a published architecture on new data, develop and evaluate a new architecture, and use a trained model to answer biological questions of interest. 2019-03-28 2019-04 /pmc/articles/PMC7148117/ /pubmed/30923381 http://dx.doi.org/10.1038/s41592-019-0360-8 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Chen, Kathleen M. Cofer, Evan M. Zhou, Jian Troyanskaya, Olga G. Selene: a PyTorch-based deep learning library for sequence data |
title | Selene: a PyTorch-based deep learning library for sequence data |
title_full | Selene: a PyTorch-based deep learning library for sequence data |
title_fullStr | Selene: a PyTorch-based deep learning library for sequence data |
title_full_unstemmed | Selene: a PyTorch-based deep learning library for sequence data |
title_short | Selene: a PyTorch-based deep learning library for sequence data |
title_sort | selene: a pytorch-based deep learning library for sequence data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148117/ https://www.ncbi.nlm.nih.gov/pubmed/30923381 http://dx.doi.org/10.1038/s41592-019-0360-8 |
work_keys_str_mv | AT chenkathleenm seleneapytorchbaseddeeplearninglibraryforsequencedata AT coferevanm seleneapytorchbaseddeeplearninglibraryforsequencedata AT zhoujian seleneapytorchbaseddeeplearninglibraryforsequencedata AT troyanskayaolgag seleneapytorchbaseddeeplearninglibraryforsequencedata |