Cargando…
A Mixed Semantic Features Model for Chinese NER with Characters and Words
Named Entity Recognition (NER) is an essential part of many natural language processing (NLP) tasks. The existing Chinese NER methods are mostly based on word segmentation, or use the character sequences as input. However, using a single granularity representation would suffer from the problems of o...
Autores principales: | Chang, Ning, Zhong, Jiang, Li, Qing, Zhu, Jiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148203/ http://dx.doi.org/10.1007/978-3-030-45439-5_24 |
Ejemplares similares
-
The Processing of Visual and Phonological Configurations of Chinese One- and Two-Character Words in a Priming Task of Semantic Categorization
por: Ma, Bosen, et al.
Publicado: (2016) -
Semantic ambiguity effects on traditional Chinese character naming: A corpus-based approach
por: Chang, Ya-Ning, et al.
Publicado: (2017) -
SUBTLEX-CH: Chinese Word and Character Frequencies Based on Film Subtitles
por: Cai, Qing, et al.
Publicado: (2010) -
EduNER: a Chinese named entity recognition dataset for education research
por: Li, Xu, et al.
Publicado: (2023) -
The sequence effect: Character position processing in Chinese words
por: Zhang, Yancui, et al.
Publicado: (2022)