Cargando…
Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph
Recent years have witnessed the emergence of novel models for ad-hoc entity search in knowledge graphs of varying complexity. Since these models are based on direct term matching, their accuracy can suffer from a mismatch between vocabularies used in queries and entity descriptions. Although success...
Autores principales: | Nikolaev, Fedor, Kotov, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148220/ http://dx.doi.org/10.1007/978-3-030-45439-5_10 |
Ejemplares similares
-
Graph-Embedding Empowered Entity Retrieval
por: Gerritse, Emma J., et al.
Publicado: (2020) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Leveraging word embeddings and medical entity extraction for biomedical dataset retrieval using unstructured texts
por: Wang, Yanshan, et al.
Publicado: (2017) -
Combining entity co-occurrence with specialized word embeddings to measure entity relation in Alzheimer’s disease
por: Heo, Go Eun, et al.
Publicado: (2019) -
Mpox Knowledge Graph: a comprehensive representation embedding chemical entities and associated biology of Mpox
por: Karki, Reagon, et al.
Publicado: (2023)