Cargando…
Joint Geographical and Temporal Modeling Based on Matrix Factorization for Point-of-Interest Recommendation
With the popularity of Location-based Social Networks, Point-of-Interest (POI) recommendation has become an important task, which learns the users’ preferences and mobility patterns to recommend POIs. Previous studies show that incorporating contextual information such as geographical and temporal i...
Autores principales: | Rahmani, Hossein A., Aliannejadi, Mohammad, Baratchi, Mitra, Crestani, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148222/ http://dx.doi.org/10.1007/978-3-030-45439-5_14 |
Ejemplares similares
-
Beyond Modelling: Understanding Mental Disorders in Online Social Media
por: Ríssola, Esteban Andrés, et al.
Publicado: (2020) -
Modeling POI-Specific Spatial-Temporal Context for Point-of-Interest Recommendation
por: Wang, Hao, et al.
Publicado: (2020) -
Exploring IoT Location Information to Perform Point of Interest Recommendation Engine: Traveling to a New Geographical Region
por: Yang, Xu, et al.
Publicado: (2019) -
Point-of-interest lists and their potential in recommendation systems
por: Stamatelatos, Giorgos, et al.
Publicado: (2021) -
Point-of-interest recommendation in location-based social networks
por: Zhao, Shenglin, et al.
Publicado: (2018)