Cargando…
Multi-components System for Automatic Arabic Diacritization
In this paper, we propose an approach to tackle the problem of the automatic restoration of Arabic diacritics that includes three components stacked in a pipeline: a deep learning model which is a multi-layer recurrent neural network with LSTM and Dense layers, a character-level rule-based corrector...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148237/ http://dx.doi.org/10.1007/978-3-030-45439-5_23 |
Sumario: | In this paper, we propose an approach to tackle the problem of the automatic restoration of Arabic diacritics that includes three components stacked in a pipeline: a deep learning model which is a multi-layer recurrent neural network with LSTM and Dense layers, a character-level rule-based corrector which applies deterministic operations to prevent some errors, and a word-level statistical corrector which uses the context and the distance information to fix some diacritization issues. This approach is novel in a way that combines methods of different types and adds edit distance based corrections. We used a large public dataset containing raw diacritized Arabic text (Tashkeela) for training and testing our system after cleaning and normalizing it. On a newly-released benchmark test set, our system outperformed all the tested systems by achieving DER of 3.39% and WER of 9.94% when taking all Arabic letters into account, DER of 2.61% and WER of 5.83% when ignoring the diacritization of the last letter of every word. |
---|