Cargando…
Multi-components System for Automatic Arabic Diacritization
In this paper, we propose an approach to tackle the problem of the automatic restoration of Arabic diacritics that includes three components stacked in a pipeline: a deep learning model which is a multi-layer recurrent neural network with LSTM and Dense layers, a character-level rule-based corrector...
Autores principales: | Abbad, Hamza, Xiong, Shengwu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148237/ http://dx.doi.org/10.1007/978-3-030-45439-5_23 |
Ejemplares similares
-
Arabic Syntactic Diacritics Restoration Using BERT Models
por: Nazih, Waleed, et al.
Publicado: (2022) -
Residual-based approach for authenticating pattern of multi-style diacritical Arabic texts
por: Hakak, Saqib, et al.
Publicado: (2018) -
Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems
por: Zerrouki, Taha, et al.
Publicado: (2017) -
Does diacritics‐based lexical disambiguation modulate word frequency, length, and predictability effects? An eye‐movements investigation of processing Arabic diacritics
por: Hermena, Ehab W., et al.
Publicado: (2021) -
Do Diacritical Marks Play a Role at the Early Stages of Word Recognition in Arabic?
por: Perea, Manuel, et al.
Publicado: (2016)