Cargando…
Temporal Latent Space Modeling for Community Prediction
We propose a temporal latent space model for user community prediction in social networks, whose goal is to predict future emerging user communities based on past history of users’ topics of interest. Our model assumes that each user lies within an unobserved latent space, and similar users in the l...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148244/ http://dx.doi.org/10.1007/978-3-030-45439-5_49 |
Sumario: | We propose a temporal latent space model for user community prediction in social networks, whose goal is to predict future emerging user communities based on past history of users’ topics of interest. Our model assumes that each user lies within an unobserved latent space, and similar users in the latent space representation are more likely to be members of the same user community. The model allows each user to adjust its location in the latent space as her topics of interest evolve over time. Empirically, we demonstrate that our model, when evaluated on a Twitter dataset, outperforms existing approaches under two application scenarios, namely news recommendation and user prediction on a host of metrics such as mrr, ndcg as well as precision and f-measure. |
---|