Cargando…
Counterfactual Online Learning to Rank
Exploiting users’ implicit feedback, such as clicks, to learn rankers is attractive as it does not require editorial labelling effort, and adapts to users’ changing preferences, among other benefits. However, directly learning a ranker from implicit data is challenging, as users’ implicit feedback u...
Autores principales: | Zhuang, Shengyao, Zuccon, Guido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148247/ http://dx.doi.org/10.1007/978-3-030-45439-5_28 |
Ejemplares similares
-
Recursive module extraction using Louvain and PageRank
por: Perrin, Dimitri, et al.
Publicado: (2018) -
Counterfactual fairness: The case study of a food delivery platform’s reputational-ranking algorithm
por: Piccininni, Marco
Publicado: (2022) -
You Can Teach an Old Dog New Tricks: Rank Fusion applied to Coordination Level Matching for Ranking in Systematic Reviews
por: Scells, Harrisen, et al.
Publicado: (2020) -
Counterfactual Desirability
por: Bradley, Richard, et al.
Publicado: (2017) -
Causal conditionals and counterfactuals
por: Frosch, Caren A., et al.
Publicado: (2012)