Cargando…
Context-Guided Learning to Rank Entities
We propose a method for learning entity orders, for example, safety, popularity, and livability orders of countries. We train linear functions by using samples of ordered entities as training data, and attributes of entities as features. An example of such functions is f(Entity) [Formula: see text]...
Autores principales: | Kato, Makoto P., Imrattanatrai, Wiradee, Yamamoto, Takehiro, Ohshima, Hiroaki, Tanaka, Katsumi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148248/ http://dx.doi.org/10.1007/978-3-030-45439-5_6 |
Ejemplares similares
-
CNN-based ranking for biomedical entity normalization
por: Li, Haodi, et al.
Publicado: (2017) -
BEERE: a web server for biomedical entity expansion, ranking and explorations
por: Yue, Zongliang, et al.
Publicado: (2019) -
Linking entities through an ontology using word embeddings and syntactic re-ranking
por: Karadeniz, İlknur, et al.
Publicado: (2019) -
PPR-SSM: personalized PageRank and semantic similarity measures for entity linking
por: Lamurias, Andre, et al.
Publicado: (2019) -
PASSerRank: Prediction of Allosteric Sites with Learning to Rank
por: Tian, Hao, et al.
Publicado: (2023)