Cargando…

Carbon emissions embodied in product value chains and the role of Life Cycle Assessment in curbing them

Life cycle-based analyses are considered crucial for designing product value chains towards lower carbon emissions. We have used data reported by companies to CDP for public disclosure to build a database of 866 product carbon footprints (PCFs), from 145 companies, 30 industries, and 28 countries. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Meinrenken, Christoph J., Chen, Daniel, Esparza, Ricardo A., Iyer, Venkat, Paridis, Sally P., Prasad, Aruna, Whillas, Erika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148294/
https://www.ncbi.nlm.nih.gov/pubmed/32277082
http://dx.doi.org/10.1038/s41598-020-62030-x
Descripción
Sumario:Life cycle-based analyses are considered crucial for designing product value chains towards lower carbon emissions. We have used data reported by companies to CDP for public disclosure to build a database of 866 product carbon footprints (PCFs), from 145 companies, 30 industries, and 28 countries. We used this database to elucidate the breakdown of embodied carbon emissions across products’ value chains, how this breakdown varies by industry, and whether the reported emission reductions vary with the granularity of the PCF. For the 866 products, on average 45% of total value chain emissions arise upstream in the supply chain, 23% during the company’s direct operations, and 32% downstream. This breakdown varies strongly by industry. Across their lifecycle, the 866 products caused average total emissions of 6 times their own weight, with large variation within and across industries. Reported achievements to reduce emissions varied depending on whether a company had reported a PCF’s breakdown to life cycle stages or only the total emissions (10.9% average reduction with breakdown versus 3.7% without). We conclude that a sector-level understanding of emissions, absent of individual PCFs, is insufficient to reliably quantify carbon emissions, and that higher reported emission reductions go hand in hand with more granular PCFs.