Cargando…
Non-random sampling leads to biased estimates of transcriptome association
Integration of independent data resources across -omics platforms offers transformative opportunity for novel clinical and biological discoveries. However, application of emerging analytic methods in the context of selection bias represents a noteworthy and pervasive challenge. We hypothesize that c...
Autores principales: | Foulkes, A. S., Balasubramanian, R., Qian, J., Reilly, M. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148323/ https://www.ncbi.nlm.nih.gov/pubmed/32277087 http://dx.doi.org/10.1038/s41598-020-62575-x |
Ejemplares similares
-
Misspecification of confounder-exposure and confounder-outcome associations leads to bias in effect estimates
por: Schuster, Noah A., et al.
Publicado: (2023) -
On the Bias of Precision Estimation Under Separate Sampling
por: Xie, Shuilian, et al.
Publicado: (2019) -
The influence of sample biases on estimations of marine microbial diversity
por: Rempe, Caroline, et al.
Publicado: (2012) -
Network Structure and Biased Variance Estimation in Respondent Driven Sampling
por: Verdery, Ashton M., et al.
Publicado: (2015) -
Testing sampling bias in estimates of adolescent social competence and behavioral control
por: Fakkel, M., et al.
Publicado: (2020)