Cargando…
Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network
Segmentation of normal organs is a critical and time-consuming process in radiotherapy. Auto-segmentation of abdominal organs has been made possible by the advent of the convolutional neural network. We utilized the U-Net, a 3D-patch-based convolutional neural network, and added graph-cut algorithm-...
Autores principales: | Kim, Hojin, Jung, Jinhong, Kim, Jieun, Cho, Byungchul, Kwak, Jungwon, Jang, Jeong Yun, Lee, Sang-wook, Lee, June-Goo, Yoon, Sang Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148331/ https://www.ncbi.nlm.nih.gov/pubmed/32277135 http://dx.doi.org/10.1038/s41598-020-63285-0 |
Ejemplares similares
-
Fluence-map generation for prostate intensity-modulated radiotherapy planning using a deep-neural-network
por: Lee, Hoyeon, et al.
Publicado: (2019) -
Evaluation of Hepatic Toxicity after Repeated Stereotactic Body Radiation Therapy for Recurrent Hepatocellular Carcinoma using Deformable Image Registration
por: Lee, Sumin, et al.
Publicado: (2018) -
Automated Field-In-Field (FIF) Plan Framework Combining Scripting Application
Programming Interface and User-Executed Program for Breast Forward IMRT
por: Kim, Hojin, et al.
Publicado: (2018) -
A study of quantitative indicators for slice sorting in cine-mode 4DCT
por: Kim, Changhwan, et al.
Publicado: (2022) -
Plan optimization with L0-norm and group sparsity constraints for a new rotational, intensity-modulated brachytherapy for cervical cancer
por: Kim, Hojin, et al.
Publicado: (2020)