Cargando…

Comparison of commercially available whole-genome sequencing kits for variant detection in circulating cell-free DNA

Circulating cell-free DNA (ccfDNA) has great potential for non-invasive diagnosis, prognosis and monitoring treatment of disease. However, a sensitive and specific whole-genome sequencing (WGS) method is required to identify novel genetic variations (i.e., SNVs, CNVs and INDELS) on ccfDNA that can b...

Descripción completa

Detalles Bibliográficos
Autores principales: Mauger, Florence, Horgues, Caroline, Pierre-Jean, Morgane, Oussada, Nouara, Mesrob, Lilia, Deleuze, Jean-François
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148341/
https://www.ncbi.nlm.nih.gov/pubmed/32277101
http://dx.doi.org/10.1038/s41598-020-63102-8
Descripción
Sumario:Circulating cell-free DNA (ccfDNA) has great potential for non-invasive diagnosis, prognosis and monitoring treatment of disease. However, a sensitive and specific whole-genome sequencing (WGS) method is required to identify novel genetic variations (i.e., SNVs, CNVs and INDELS) on ccfDNA that can be used as clinical biomarkers. In this article, five WGS methods were compared: ThruPLEX Plasma-seq, QIAseq cfDNA All-in-One, NEXTFLEX Cell Free DNA-seq, Accel-NGS 2 S PCR FREE DNA and Accel-NGS 2 S PLUS DNA. The Accel PCR-free kit did not produce enough material for sequencing. The other kits had significant common number of SNVs, INDELs and CNVs and showed similar results for SNVs and CNVs. The detection of variants and genomic signatures depends more upon the type of plasma sample rather than the WGS method used. Accel detected several variants not observed by the other kits. ThruPLEX seemed to identify more low-abundant SNVs and SNV signatures were similar to signatures observed with the QIAseq kit. Accel and NEXTFLEX had similar CNV and SNV signatures. These results demonstrate the importance of establishing a standardized workflow for identifying non-invasive candidate biomarkers. Moreover, the combination of variants discovered in ccfDNA using WGS has the potential to identify enrichment pathways, while the analysis of signatures could identify new subgroups of patients.