Cargando…
IOUC-3DSFCNN: Segmentation of Brain Tumors via IOU Constraint 3D Symmetric Full Convolution Network with Multimodal Auto-context
Accurate segmentation of brain tumors from magnetic resonance (MR) images play a pivot role in assisting diagnoses, treatments and postoperative evaluations. However, due to its structural complexities, e.g., fuzzy tumor boundaries with irregular shapes, accurate 3D brain tumor delineation is challe...
Autores principales: | Liu, Jinping, Liu, Hui, Tang, Zhaohui, Gui, Weihua, Ma, Tianyu, Gong, Subo, Gao, Quanquan, Xie, Yongfang, Niyoyita, Jean Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148375/ https://www.ncbi.nlm.nih.gov/pubmed/32277141 http://dx.doi.org/10.1038/s41598-020-63242-x |
Ejemplares similares
-
Object Detection for UAV Aerial Scenarios Based on Vectorized IOU
por: Lu, Shun, et al.
Publicado: (2023) -
IoU Regression with H+L-Sampling for Accurate Detection Confidence
por: Wang, Dong, et al.
Publicado: (2021) -
PAC-Net: Multi-pathway FPN with position attention guided connections and vertex distance IoU for 3D medical image detection
por: Xu, Zhenghua, et al.
Publicado: (2023) -
Influence of Insufficient Dataset Augmentation on IoU and Detection Threshold in CNN Training for Object Detection on Aerial Images
por: Bożko, Arkadiusz, et al.
Publicado: (2022) -
Corner-Point and Foreground-Area IoU Loss: Better Localization of Small Objects in Bounding Box Regression
por: Cai, Delong, et al.
Publicado: (2023)