Cargando…

Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections

Diabetic foot ulcers (DFUs) are major complications of Diabetes mellitus being responsible for significant morbidity and mortality. DFUs frequently become chronically infected by a complex community of bacteria, including multidrug-resistant and biofilm-producing strains of Staphylococcus aureus and...

Descripción completa

Detalles Bibliográficos
Autores principales: Gomes, Diana, Santos, Raquel, S. Soares, Rui, Reis, Solange, Carvalho, Sandra, Rego, Pedro, C. Peleteiro, Maria, Tavares, Luís, Oliveira, Manuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148459/
https://www.ncbi.nlm.nih.gov/pubmed/32244862
http://dx.doi.org/10.3390/antibiotics9030128
Descripción
Sumario:Diabetic foot ulcers (DFUs) are major complications of Diabetes mellitus being responsible for significant morbidity and mortality. DFUs frequently become chronically infected by a complex community of bacteria, including multidrug-resistant and biofilm-producing strains of Staphylococcus aureus and Pseudomonas aeruginosa. Diabetic foot infections (DFI) are often recalcitrant to conventional antibiotics and alternative treatment strategies are urgently needed. Antimicrobial Peptides (AMPs), such as pexiganan and nisin, have been increasingly investigated and reported as effective antimicrobial agents. Here, we evaluated the antibacterial potential of pexiganan and nisin used in combination (dual-AMP) to control the growth of planktonic and biofilm co-cultures of S. aureus and P. aeruginosa clinical strains, co-isolated from a DFU. A DFU collagen three-dimensional (3D) model was used to evaluate the distribution and efficacy of AMPs locally delivered into the model. The concentration of pexiganan required to inhibit and eradicate both planktonic and biofilm-based bacterial cells was substantially reduced when used in combination with nisin. Moreover, incorporation of both AMPs in a guar gum delivery system (dual-AMP biogel) did not affect the dual-AMP antimicrobial activity. Importantly, the application of the dual-AMP biogel resulted in the eradication of the S. aureus strain from the model. In conclusion, data suggest that the local application of the dual-AMPs biogel constitutes a potential complementary therapy for the treatment of infected DFU.