Cargando…
Co-Networks Poly(hydroxyalkanoates)-Terpenes to Enhance Antibacterial Properties
Biocompatible and biodegradable bacterial polyesters, poly(hydroxyalkanoates) (PHAs), were combined with linalool, a well-known monoterpene, extracted from spice plants to design novel antibacterial materials. Their chemical association by a photo-induced thiol-ene reaction provided materials having...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148494/ https://www.ncbi.nlm.nih.gov/pubmed/31972967 http://dx.doi.org/10.3390/bioengineering7010013 |
Sumario: | Biocompatible and biodegradable bacterial polyesters, poly(hydroxyalkanoates) (PHAs), were combined with linalool, a well-known monoterpene, extracted from spice plants to design novel antibacterial materials. Their chemical association by a photo-induced thiol-ene reaction provided materials having both high mechanical resistance and flexibility. The influence of the nature of the crosslinking agent and the weight ratio of linalool on the thermo-mechanical performances were carefully evaluated. The elongation at break increases from 7% for the native PHA to 40% for PHA–linalool co-networks using a tetrafunctional cross-linking agent. The materials highlighted tremendous anti-adherence properties against Escherichia coli and Staphylococcus aureus by increasing linalool ratios. A significant decrease in antibacterial adhesion of 63% and 82% was observed for E. coli and S. aureus, respectively. |
---|