Cargando…
Impact of Strain Competition on Bacterial Resistance in Immunocompromised Populations
Despite the risk of emerging drug resistance that occurs with the frequent use of antimicrobial agents, targeted and prophylactic antibiotics have been considered crucial to opportunistic infection management among the HIV/AIDS-immunocompromised. As we recently demonstrated, the disrupted selective...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148506/ https://www.ncbi.nlm.nih.gov/pubmed/32156072 http://dx.doi.org/10.3390/antibiotics9030114 |
Sumario: | Despite the risk of emerging drug resistance that occurs with the frequent use of antimicrobial agents, targeted and prophylactic antibiotics have been considered crucial to opportunistic infection management among the HIV/AIDS-immunocompromised. As we recently demonstrated, the disrupted selective pressures that occur in AIDS-prevalent host populations increase the probability of novel emergence. This effect is concerning, given that bacterial strains unresponsive to first-line antibiotics can be particularly dangerous to hosts whose immune response is insufficient to fight infection in the absence of antibiotic support. While greater host susceptibility within a highly immunocompromised population may offer a fitness advantage to drug-resistant bacterial strains, this advantage could be mitigated by increased morbidity and mortality among the AIDS-immunocompromised. Using a Susceptible-Exposed-Infectious-Recovered (SEIR) epidemiological model parameterized to reflect conditions in an AIDS-prevalent host population, we examine the evolutionary relationship between drug-sensitive and -resistant strains of Mycobacterium tuberculosis. We explore this relationship when the fitness of the resistant strain is varied relative to that of the sensitive strain to investigate the likely long-term multi-strain dynamics of the AIDS-mediated increased emergence of drug resistance. |
---|