Cargando…
Direct structural evidence for formation of a stem-loop structure involved in ribosomal frameshifting in human immunodeficiency virus type 1
Programmed ribosomal frameshifting in viral messenger RNA occurs in response to neighboring sequence elements consisting of: a frameshift site, a spacer, and a downstream enhancer sequence. In human immunodeficiency virus type 1 (HIV-1) mRNA, this sequence element has a potential to form either a st...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science B.V.
1998
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148724/ https://www.ncbi.nlm.nih.gov/pubmed/9545540 http://dx.doi.org/10.1016/S0167-4781(98)00004-9 |
Sumario: | Programmed ribosomal frameshifting in viral messenger RNA occurs in response to neighboring sequence elements consisting of: a frameshift site, a spacer, and a downstream enhancer sequence. In human immunodeficiency virus type 1 (HIV-1) mRNA, this sequence element has a potential to form either a stem-loop or a pseudoknot structure. Based on many mutational studies, the stem-loop structure has been proposed for the downstream enhancer region of the HIV-1 mRNA. This stimulatory stem-loop structure is separated from the shift site by a spacer of seven nucleotides. In contrast, a recent report has proposed an alternative model in which the bases in the spacer sequence form a pseudoknot structure as the downstream enhancer sequence [Du et al., Biochemistry 35 (1996) 4187–4198.]. Using UV melting and enzymatic mapping analyses, we have investigated the conformation of the sequence region involved in ribosomal frameshifting in HIV-1. Our S(1), V(1), and T(1) endonuclease mappings, together with UV melting analysis, clearly indicate that this sequence element of the HIV-1 mRNA frameshift site forms a stem-loop structure, not a pseudoknot structure. This finding further supports the stem-loop structure proposed by many mutational studies for the downstream enhancer sequence of the HIV-1 mRNA. |
---|