Cargando…
Hyper-activated IRF-1 and STAT1 contribute to enhanced Interferon stimulated gene (ISG) expression by Interferon α and γ co-treatment in human hepatoma cells
Previous reports suggest that type I and type II Interferon can co-operatively inhibit some virus replication, e.g. HCV, SARS-CoV, HSV-1. To find out the molecular mechanism underlying this phenomenon, we analyzed the transcription profile stimulated by IFN-α and IFN-γ in Huh-7 cells and found that...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148893/ https://www.ncbi.nlm.nih.gov/pubmed/16987558 http://dx.doi.org/10.1016/j.bbaexp.2006.08.003 |
Sumario: | Previous reports suggest that type I and type II Interferon can co-operatively inhibit some virus replication, e.g. HCV, SARS-CoV, HSV-1. To find out the molecular mechanism underlying this phenomenon, we analyzed the transcription profile stimulated by IFN-α and IFN-γ in Huh-7 cells and found that the transcription of a subset of IFN stimulated genes (ISGs) including BclG, XAF1, TRAIL and TAP1 was enhanced when IFN-α and γ were both present. Promoter analysis of BclG revealed that IRF-1 and STAT1 were both required in this process. Enhanced IRF-1/DNA complex formation was observed in interferon co-treatment group by gel shift analysis. Furthermore, IRF-1 activation was found to be generally required in this cluster of ISGs. STAT1 tyrosine phosphorylation was elevated by IFN combination treatment, however, only the hyper-transactivation of GAS but not ISRE was observed. In conclusion, hyper-activation of IRF-1 and elevated STAT1 dimer formation may be two general switches which contribute to a much more robust antiviral symphony against virus replication when type I and type II IFNs are co-administered. |
---|