Cargando…
Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response
In this paper, the dynamical behaviors for a five-dimensional virus infection model with diffusion and two delays which describes the interactions of antibody, cytotoxic T-lymphocyte (CTL) immune responses and a general incidence function are investigated. The reproduction numbers for virus infectio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149116/ http://dx.doi.org/10.1007/s40314-017-0543-9 |
Sumario: | In this paper, the dynamical behaviors for a five-dimensional virus infection model with diffusion and two delays which describes the interactions of antibody, cytotoxic T-lymphocyte (CTL) immune responses and a general incidence function are investigated. The reproduction numbers for virus infection, antibody immune response, CTL immune response, CTL immune competition and antibody immune competition, respectively, are calculated. By using the Lyapunov functionals and linearization methods, the threshold conditions on the global stability of the equilibria for infection-free, immune-free, antibody response, CTL response and antibody and CTL responses, respectively, are established if the space is assumed as homogeneous. When the space is inhomogeneous, the effects of diffusion, intracellular delay and production delay are obtained by the numerical simulations. |
---|