Cargando…
Classification of Lung Nodules Based on Deep Residual Networks and Migration Learning
The classification process of lung nodule detection in a traditional computer-aided detection (CAD) system is complex, and the classification result is heavily dependent on the performance of each step in lung nodule detection, causing low classification accuracy and high false positive rate. In ord...
Autores principales: | Wu, Panpan, Sun, Xuanchao, Zhao, Ziping, Wang, Haishuai, Pan, Shirui, Schuller, Björn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149413/ https://www.ncbi.nlm.nih.gov/pubmed/32318102 http://dx.doi.org/10.1155/2020/8975078 |
Ejemplares similares
-
Multi-Level Cross Residual Network for Lung Nodule Classification
por: Lyu, Juan, et al.
Publicado: (2020) -
Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder: Genotype-Based Deep Learning
por: Wang, Haishuai, et al.
Publicado: (2021) -
A diagnostic classification of lung nodules using multiple-scale residual network
por: Wang, Hongfeng, et al.
Publicado: (2023) -
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images
por: Song, QingZeng, et al.
Publicado: (2017) -
Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss
por: Tran, Giang Son, et al.
Publicado: (2019)