Cargando…
Microbial Proteomics and Their Importance in Medical Microbiology
Microbial infection is a leading cause of death around the world. Most of the infectious diseases are caused by drug-resistant microbes; this may lead to a delay in the administration of microbiologically effective therapy (Chen et al., 2017; Del Chierico et al., 2014). Therefore, exhaustive underst...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149639/ http://dx.doi.org/10.1016/B978-0-12-816328-3.00003-9 |
Sumario: | Microbial infection is a leading cause of death around the world. Most of the infectious diseases are caused by drug-resistant microbes; this may lead to a delay in the administration of microbiologically effective therapy (Chen et al., 2017; Del Chierico et al., 2014). Therefore, exhaustive understanding of microbial physiologies, infection and defense systems, and survival strategies is of great interest in order to actively defeat microbial infection. Microbial proteomics provides complete information of microbial physiology and expression and function of the proteins that are involved in infection and also gives a clue in clinical diagnosis and antimicrobial therapy (Pérez-Llarena and Bou, 2016; Vranakis et al., 2014). Microbial proteomics helps to identify the proteins associated with microbial activity, microbial host-pathogen interactions, and antimicrobial resistant mechanism. Microbial activity of pathogens can be confirmed by using the 2-D gel-based and gel-free method with the combination of MALDI-TOF-LC-MS/MS. Proteomic analysis of microbial host-pathogen interaction reveals valuable information about the virulence of the pathogen and its resistance; it helps in better understanding of the infection and for developing strategies against microbial infections (Cheng et al., 2016). Fig. 3.1 schematically illustrates the proteomic analysis of the bacterial samples. |
---|