Cargando…

Infections

This chapter reviews the epidemiological evidence implicating infectious pathogens as triggers and will discuss the mechanisms of interaction between the host–pathogen response and preexisting airway pathology that result in an exacerbation. Asthma is a multifaceted syndrome involving atopy, bronchi...

Descripción completa

Detalles Bibliográficos
Autores principales: Message, Simon D., Johnston, Sebastian L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149941/
http://dx.doi.org/10.1016/B978-0-12-374001-4.00037-7
_version_ 1783520918320971776
author Message, Simon D.
Johnston, Sebastian L.
author_facet Message, Simon D.
Johnston, Sebastian L.
author_sort Message, Simon D.
collection PubMed
description This chapter reviews the epidemiological evidence implicating infectious pathogens as triggers and will discuss the mechanisms of interaction between the host–pathogen response and preexisting airway pathology that result in an exacerbation. Asthma is a multifaceted syndrome involving atopy, bronchial hyperreactivity, and IgE and non-IgE-mediated acute and chronic immune responses. The asthmatic airway is characterized by an infiltrate of eosinophils and of T-lymphocytes expressing the type 2 cytokines IL-4, IL-5, and IL-13. Trigger factors associated with acute exacerbations of asthma include exposure to environmental allergens, especially animals, molds, pollens and mites, cold, exercise, and drugs. The frequency of exacerbations is a major factor in the quality of life of patients with COPD. The typical clinical features of an exacerbation include increased dyspnea, wheezing, cough, sputum production, and worsened gas exchange. Although noninfectious causes of exacerbations such as allergy, air pollution, or inhaled irritants including cigarette smoke may be important, acute airway infections are the major precipitants. The infection and consequent host inflammatory response result in increased airway obstruction. The success of vaccination to prevent respiratory virus infections has been limited by significant variation within the major virus types causing disease. Currently much of the treatment of infective exacerbations of asthma and COPD is symptomatic, consisting of increased bronchodilators, either short-acting β 2—agonists in inhaled or intravenous form or anticholinergics or theophyllines, or supportive in the form of oxygen and in severe cases noninvasive or invasive ventilatory measures.
format Online
Article
Text
id pubmed-7149941
institution National Center for Biotechnology Information
language English
publishDate 2009
record_format MEDLINE/PubMed
spelling pubmed-71499412020-04-13 Infections Message, Simon D. Johnston, Sebastian L. Asthma and COPD Article This chapter reviews the epidemiological evidence implicating infectious pathogens as triggers and will discuss the mechanisms of interaction between the host–pathogen response and preexisting airway pathology that result in an exacerbation. Asthma is a multifaceted syndrome involving atopy, bronchial hyperreactivity, and IgE and non-IgE-mediated acute and chronic immune responses. The asthmatic airway is characterized by an infiltrate of eosinophils and of T-lymphocytes expressing the type 2 cytokines IL-4, IL-5, and IL-13. Trigger factors associated with acute exacerbations of asthma include exposure to environmental allergens, especially animals, molds, pollens and mites, cold, exercise, and drugs. The frequency of exacerbations is a major factor in the quality of life of patients with COPD. The typical clinical features of an exacerbation include increased dyspnea, wheezing, cough, sputum production, and worsened gas exchange. Although noninfectious causes of exacerbations such as allergy, air pollution, or inhaled irritants including cigarette smoke may be important, acute airway infections are the major precipitants. The infection and consequent host inflammatory response result in increased airway obstruction. The success of vaccination to prevent respiratory virus infections has been limited by significant variation within the major virus types causing disease. Currently much of the treatment of infective exacerbations of asthma and COPD is symptomatic, consisting of increased bronchodilators, either short-acting β 2—agonists in inhaled or intravenous form or anticholinergics or theophyllines, or supportive in the form of oxygen and in severe cases noninvasive or invasive ventilatory measures. 2009 2009-01-30 /pmc/articles/PMC7149941/ http://dx.doi.org/10.1016/B978-0-12-374001-4.00037-7 Text en Copyright © 2009 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Message, Simon D.
Johnston, Sebastian L.
Infections
title Infections
title_full Infections
title_fullStr Infections
title_full_unstemmed Infections
title_short Infections
title_sort infections
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149941/
http://dx.doi.org/10.1016/B978-0-12-374001-4.00037-7
work_keys_str_mv AT messagesimond infections
AT johnstonsebastianl infections