Cargando…

Structural Insight Into the Viral 3C-Like Protease Inhibitors: Comparative SAR/QSAR Approaches

Severe acute respiratory syndrome (SARS), caused by SARS-coronavirus (SARS-CoV), is a dreadful infection worldwide having economic and medical importance and a global threat for health. It was turned into an epidemic in South China followed by a chain of infections across three generations. A number...

Descripción completa

Detalles Bibliográficos
Autores principales: Adhikari, Nilanjan, Baidya, Sandip K., Saha, Achintya, Jha, Tarun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150231/
http://dx.doi.org/10.1016/B978-0-12-809712-0.00011-3
Descripción
Sumario:Severe acute respiratory syndrome (SARS), caused by SARS-coronavirus (SARS-CoV), is a dreadful infection worldwide having economic and medical importance and a global threat for health. It was turned into an epidemic in South China followed by a chain of infections across three generations. A number of pathogeneses in human may occur due to the virus. This infection has not been taken into account before the SARS outbreak, and still it is a neglected one. Therefore, there is an urgent need to develop small molecule antivirals to combat the SARS-CoV. No vaccines are available till date though a number of SARS-CoV 3C-like and 3C protease inhibitors were reported. In this chapter, quantitative structure–activity relationship technique is used for development of anti-SARS and anti-HRV drugs and outcome discussed in details. This approach may be a useful strategy to design novel and potential anti-SARS drugs to combat these dreadful viral diseases.