Cargando…

Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents

The amount of gas in ultrasound contrast agents is related to their acoustic activity. Because of this relationship, gas volume has been used as a key variable in normalizing the in vitro and in vivo acoustic behavior of lipid shell-stabilized bubbles with different sizes and shell components. Despi...

Descripción completa

Detalles Bibliográficos
Autores principales: Abenojar, Eric C., Bederman, Ilya, de Leon, Al C., Zhu, Jinle, Hadley, Judith, Kolios, Michael C., Exner, Agata A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150797/
https://www.ncbi.nlm.nih.gov/pubmed/32121484
http://dx.doi.org/10.3390/pharmaceutics12030208
_version_ 1783521100551946240
author Abenojar, Eric C.
Bederman, Ilya
de Leon, Al C.
Zhu, Jinle
Hadley, Judith
Kolios, Michael C.
Exner, Agata A.
author_facet Abenojar, Eric C.
Bederman, Ilya
de Leon, Al C.
Zhu, Jinle
Hadley, Judith
Kolios, Michael C.
Exner, Agata A.
author_sort Abenojar, Eric C.
collection PubMed
description The amount of gas in ultrasound contrast agents is related to their acoustic activity. Because of this relationship, gas volume has been used as a key variable in normalizing the in vitro and in vivo acoustic behavior of lipid shell-stabilized bubbles with different sizes and shell components. Despite its importance, bubble gas volume has typically only been theoretically calculated based on bubble size and concentration that is typically measured using the Coulter counter for microbubbles and nanoparticle tracking analysis (NTA) for nanoscale bubbles. However, while these methods have been validated for the analysis of liquid or solid particles, their application in bubble analysis has not been rigorously studied. We have previously shown that resonant mass measurement (RMM) may be a better-suited technique for sub-micron bubble analysis, as it can measure both buoyant and non-buoyant particle size and concentration. Here, we provide validation of RMM bubble analysis by using headspace gas chromatography/mass spectrometry (GC/MS) to experimentally measure the gas volume of the bubble samples. This measurement was then used as ground truth to test the accuracy of theoretical gas volume predictions based on RMM, NTA (for nanobubbles), and Coulter counter (for microbubbles) measurements. The results show that the headspace GC/MS gas volume measurements agreed well with the theoretical predictions for the RMM of nanobubbles but not NTA. For nanobubbles, the theoretical gas volume using RMM was 10% lower than the experimental GC/MS measurements; meanwhile, using NTA resulted in an 82% lower predicted gas volume. For microbubbles, the experimental gas volume from the GC/MS measurements was 27% lower compared to RMM and 72% less compared to the Coulter counter results. This study demonstrates that the gas volume of nanobubbles and microbubbles can be reliably measured using headspace GC/MS to validate bubble size measurement techniques. We also conclude that the accuracy of theoretical predictions is highly dependent on proper size and concentration measurements.
format Online
Article
Text
id pubmed-7150797
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-71507972020-04-20 Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents Abenojar, Eric C. Bederman, Ilya de Leon, Al C. Zhu, Jinle Hadley, Judith Kolios, Michael C. Exner, Agata A. Pharmaceutics Article The amount of gas in ultrasound contrast agents is related to their acoustic activity. Because of this relationship, gas volume has been used as a key variable in normalizing the in vitro and in vivo acoustic behavior of lipid shell-stabilized bubbles with different sizes and shell components. Despite its importance, bubble gas volume has typically only been theoretically calculated based on bubble size and concentration that is typically measured using the Coulter counter for microbubbles and nanoparticle tracking analysis (NTA) for nanoscale bubbles. However, while these methods have been validated for the analysis of liquid or solid particles, their application in bubble analysis has not been rigorously studied. We have previously shown that resonant mass measurement (RMM) may be a better-suited technique for sub-micron bubble analysis, as it can measure both buoyant and non-buoyant particle size and concentration. Here, we provide validation of RMM bubble analysis by using headspace gas chromatography/mass spectrometry (GC/MS) to experimentally measure the gas volume of the bubble samples. This measurement was then used as ground truth to test the accuracy of theoretical gas volume predictions based on RMM, NTA (for nanobubbles), and Coulter counter (for microbubbles) measurements. The results show that the headspace GC/MS gas volume measurements agreed well with the theoretical predictions for the RMM of nanobubbles but not NTA. For nanobubbles, the theoretical gas volume using RMM was 10% lower than the experimental GC/MS measurements; meanwhile, using NTA resulted in an 82% lower predicted gas volume. For microbubbles, the experimental gas volume from the GC/MS measurements was 27% lower compared to RMM and 72% less compared to the Coulter counter results. This study demonstrates that the gas volume of nanobubbles and microbubbles can be reliably measured using headspace GC/MS to validate bubble size measurement techniques. We also conclude that the accuracy of theoretical predictions is highly dependent on proper size and concentration measurements. MDPI 2020-03-01 /pmc/articles/PMC7150797/ /pubmed/32121484 http://dx.doi.org/10.3390/pharmaceutics12030208 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Abenojar, Eric C.
Bederman, Ilya
de Leon, Al C.
Zhu, Jinle
Hadley, Judith
Kolios, Michael C.
Exner, Agata A.
Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents
title Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents
title_full Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents
title_fullStr Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents
title_full_unstemmed Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents
title_short Theoretical and Experimental Gas Volume Quantification of Micro- and Nanobubble Ultrasound Contrast Agents
title_sort theoretical and experimental gas volume quantification of micro- and nanobubble ultrasound contrast agents
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150797/
https://www.ncbi.nlm.nih.gov/pubmed/32121484
http://dx.doi.org/10.3390/pharmaceutics12030208
work_keys_str_mv AT abenojarericc theoreticalandexperimentalgasvolumequantificationofmicroandnanobubbleultrasoundcontrastagents
AT bedermanilya theoreticalandexperimentalgasvolumequantificationofmicroandnanobubbleultrasoundcontrastagents
AT deleonalc theoreticalandexperimentalgasvolumequantificationofmicroandnanobubbleultrasoundcontrastagents
AT zhujinle theoreticalandexperimentalgasvolumequantificationofmicroandnanobubbleultrasoundcontrastagents
AT hadleyjudith theoreticalandexperimentalgasvolumequantificationofmicroandnanobubbleultrasoundcontrastagents
AT koliosmichaelc theoreticalandexperimentalgasvolumequantificationofmicroandnanobubbleultrasoundcontrastagents
AT exneragataa theoreticalandexperimentalgasvolumequantificationofmicroandnanobubbleultrasoundcontrastagents