Cargando…
A Two-Stage Framework for Automated Malignant Pulmonary Nodule Detection in CT Scans
This research is concerned with malignant pulmonary nodule detection (PND) in low-dose CT scans. Due to its crucial role in the early diagnosis of lung cancer, PND has considerable potential in improving the survival rate of patients. We propose a two-stage framework that exploits the ever-growing a...
Autores principales: | EL-Bana, Shimaa, Al-Kabbany, Ahmad, Sharkas, Maha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151085/ https://www.ncbi.nlm.nih.gov/pubmed/32121281 http://dx.doi.org/10.3390/diagnostics10030131 |
Ejemplares similares
-
A multi-task pipeline with specialized streams for classification and segmentation of infection manifestations in COVID-19 scans
por: El-bana, Shimaa, et al.
Publicado: (2020) -
GASTRO-CADx: a three stages framework for diagnosing gastrointestinal diseases
por: Attallah, Omneya, et al.
Publicado: (2021) -
A classification of pulmonary nodules by CT scan
por: Bellomi, M
Publicado: (2012) -
Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans
por: Mu, Junhao, et al.
Publicado: (2023) -
Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans
por: Hendrix, Ward, et al.
Publicado: (2023)